

DCO2520

DATA STRUCTURES AND ALGORITHMS

(CHAPTER 3)

BY

PATRICK WONG

�
Evaluating a Postfix Expression

opndstk = the empty stack;

/*scan the input string reading one element at a time into symb*/

while (not end of input){

	symb=next input character;

	if (symb is an operand)

		push(opndstk,symb);

	else{

	/* symb is an operator*/

	opnd2=pop(opndstk);

	opnd1=pop(opndstk);

	value=result of applying symb to opnd1 and opnd2;

	push(opndstk,value);

	}

}

return(pop(opndstk));

	�
Tree traversal

Preorder :

Inorder :

Post order :

�
ALGORITHM

Preorder :

1.	Visit the root

2.	Traverse the left subtree in preorder

3.	Traverse the right subtree in preorder

�
Inorder :

1.	Traverse the left subtree in inorder

2.	Visit the root

3.	Traverse the right subtree in inorder

�
Postorder :

1.	Traverse the left subtree in post order

2.	Traverse the right subtree in post order

3.	Visit the root

�
Binary Tree

Representations :

1. Linked array representation

	#define NUMNODES 500

	struct nodetype {

		int info;

		int left;

		int right;

		int father;

	};

	struct nodetype node[numnodes];

�
2. Dynamic node representation

	struc nodetype {

		int info;

		struct nodetype *left;

		struct nodetype *right;

		struct nodetype *father;

	};

	typedef struct nodetype *NODEPTR;

�
3.Implicit Array Representation:

	#define NUMNODES 500

	struct nodetype {

		int info;

		int used;

	} node[NUMNODES];

�
Binary Search Tree

Definition :

A binary search tree is a binary tree such that for each node, say N, the following statements are true:

1.	If L is any node in the left subtree of N, then L is less than N.

2.	If R is any node in the right subtree of N, then R is greater than N.

�
Manipulating Binary Search Tree

Operations such as tree traversal and node insertion are trivial and simple to implement. Node insertion is always performed to those nodes which have one or no child. However, node deletion would need more attention.

1. node to be deleted is a terminal node or has one child.

2. node to be deleted has two children.

�
Manipulating Binary Search Tree

In the first case, we can simply delete the node, say x, by modifying the corresponding link of x's parent to point to x's child.

In the second case, the deleted node is to be replaced by either the rightmost of its left subtree or the leftmost of its right subtree.

	�
Inserting a node into a binary search tree

q = null;

p = tree;

while (p != null) {

	if (key == p->info)

		return(p);

	q = p;

	if (key < p->info)

		p = left(p);

	else

		p = p->right;

} /*end while*/

v = maketree (rec, key);

if (q == null)

	tree = v;

else

	if (key < q->info)

		q->left = v;

else

		q->right = v; return (v);�
Threaded Binary Tree

A careful look at the linked representation of any binary tree, you would notice that the number of null links exceeds the number of actual pointers.

For a binary tree of n nodes, the number of links between nodes is (n-1) whereas the number of pointers among the nodes of the tree is 2n.

Therefore, there are (n+1) null links. Since traversal of a tree is so common, why don't we make use of these unused pointers to facilitate the traversal process ?

�
Traversing a Binary Search Tree

Since an inorder listing of a binary search tree gives the elements of a tree in a sorted order, it would be a good idea to use the null pointers to make an inorder traversal more efficiently. Of course, one may choose to use them fo preorder or postorder traversal.

The idea is to replace the null links by pointer, call threads, to other nodes in the tree. If the right child pointer of a node p is equal to nil, we will replace it by a pointer to the immediate successor node of node p in inorder.

�
Declaration

struct nodetype {

	

	int info;

	struct nodetype *left;

	struct nodetype *right;

	int rthread;

	}

typedef struct nodetype *NODEPTR;

C implementation of inorder traversal of a right in-thread binary tree.

/* p.258*/

intrav (NODEPTR tree)

{

	nodeptr p, q;

	p = tree;

	do {

		q = NULL;

	while (p != NULL) {

		q = p;

		p = p->left;

	} /*end while*/

	if (q != NULL {

		printf("%d \n", q->info);

		p = q->right;

		while (q->rthread && p != NULL){

			printf("%d\n",p->info);

			q = p;

			p = p->right;

		} /*end if*/

	}while (q != NULL)

} /*end intrav*/

		DCO2520 DATA STRUCTURES & ALGORITHMS	

			

3.� PAGE �19�

		

			

		 DCO2520 DATA STRUCTURES & ALGORITHMS	

		 	

3.� PAGE �2�

